- 一、题目
- 二、解题思路
- 三、解题代码
一、题目
There are N children standing in a line. Each child is assigned a rating value.
You are giving candies to these children subjected to the following requirements:
Each child must have at least one candy. Children with a higher rating get more candies than their neighbors. What is the minimum candies you must give?
有 N 个小孩站成一列。每个小孩有一个评级。
按照以下要求,给小孩分糖果:
- 每个小孩至少得到一颗糖果。
- 评级越高的小孩可以比他相邻的两个小孩得到更多的糖果。
需最少准备多少糖果?
二、解题思路
首先我们会给每个小朋友一颗糖果,然后从左到右,假设第i个小孩的等级比第i - 1个小孩高,那么第i的小孩的糖果数量就是第i - 1个小孩糖果数量在加一。再我们从右到左,如果第i个小孩的等级大于第i + 1个小孩的,同时第i个小孩此时的糖果数量小于第i + 1的小孩,那么第i个小孩的糖果数量就是第i + 1个小孩的糖果数量加一。
三、解题代码
public class Solution {public int candy(int[] ratings) {if(ratings == null || ratings.length == 0) {return 0;}int[] count = new int[ratings.length];Arrays.fill(count, 1);int sum = 0;for(int i = 1; i < ratings.length; i++) {if(ratings[i] > ratings[i - 1]) {count[i] = count[i - 1] + 1;}}for(int i = ratings.length - 1; i >= 1; i--) {sum += count[i];if(ratings[i - 1] > ratings[i] && count[i - 1] <= count[i]) { // second round has two conditionscount[i-1] = count[i] + 1;}}sum += count[0];return sum;}}
